If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12b^2-13b-14=0
a = 12; b = -13; c = -14;
Δ = b2-4ac
Δ = -132-4·12·(-14)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-29}{2*12}=\frac{-16}{24} =-2/3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+29}{2*12}=\frac{42}{24} =1+3/4 $
| 0=-16t^2+0t+48 | | 3(3x-5)+x=35 | | F(x)=15-2x^2 | | 2f—3=13 | | 58+65+x=180 | | 3x-3=2188 | | H=0.10x+9.75 | | 20w^2+16w-4=0 | | X*1.04=x+100 | | 18-4h=14 | | 1.15*7=x | | 3(2r+5)=-21 | | 1+1x=41-3x | | 24=6(−x−3)24=6(−x−3) | | 0=-16t^2-72t+280 | | 10+s=15 | | 1-z=3(z-4)-4(z-3) | | 68=(2x) | | 66+(-2x)=-10x+82 | | 0=(4x-1)(x+6) | | x−48+3x+19=−89x−48+3x+19=−89 | | 5/3=9/3-2/6x | | |x/3-9|=5 | | d+77/21=6 | | 60.9=8.7+x | | t+1=72 | | 8x^2-32x+30=0 | | 6=2/5u | | 2x-4(x-2)=-7+3x-20 | | 0=3x^2+14x+8 | | 4/5=-1/5+2/5x | | 30(v+12)=540 |